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ABSTRACT
The importance of spatial information in Online Social Net-
works is increasing at a fast pace. The number of users
regularly accessing services from their phones is rising and,
therefore, local information is becoming more and more im-
portant, for example in targeted marketing and personal-
ized services. In particular, news, from gossips to security
alerts, are daily spread across cities through social networks.
Content produced by users is consumed by their friends or
followers, whose locations can be known or inferred. The
spatial location of users’ social connections strongly affects
the areas where such information will be disseminated. As
a consequence, some users can deliver content to a certain
geographic area more easily and efficiently than others, for
example because they have a larger number of friends in that
area.

In this paper we present a set of metrics that quantita-
tively capture the effects of social links on the spreading of
information in a given area. We discuss possible applica-
tion scenarios and we present an initial critical evaluation
by means of two datasets from Twitter and Foursquare by
discussing a series of case studies.

1. INTRODUCTION
Location information is assuming increasing importance

in Online Social Networks (OSNs). In particular, a very
large number of users is now accessing these services using
mobile devices [20, 14]. Certain social networks, such as
Foursquare, are built around the very same concept of loca-
tion [23]. Geo-tagging of posts and photos is becoming popu-
lar in Facebook and geographic information is often provided
in user profiles and in the generated contents in Twitter.
Through these services, information is disseminated across
cities, regions, states and the entire planet. Contents of dif-
ferent types are propagated and are consumed by millions of
people dispersed around the globe. Understanding the dy-
namics of the dissemination process is critical for a variety
of purposes and to answer a set of fundamental questions
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that might have important implications for the design of
the location-based online network services themselves. For
example, to what extent does the geographic distribution
of friendships in the network affect where the content will
be potentially propagated? Are we able to determine which
users are structurally central in delivering information to a
specific spatial region? By identifying these users it will be
possible to exploit them to deliver information efficiently to
specific regions.

General structural properties of large-scale OSNs have
already been explored in great detail in the past (see for
example [16]). More recently, several works have focussed
on geo-social properties of OSNs, focussing for example on
the correlation between geography and social topology [19].
Others have investigated co-location and friendship [2, 18]
and the possibility of predicting location using friendship in-
formation [18]. Indeed, these networks can be considered as
a particular class of spatial networks [4]. In the context of
complex networks a significant effort has been made to try to
give an answer to the question “Which are the most impor-
tant (i.e., the most central) nodes in a network?”. Finding
an answer is important because it has strong implications on
the processes taking places in networks, such as information
diffusion in a social network. The problem has been an-
swered by defining various centrality metrics [17]. All these
centrality measures are defined in different ways, by taking
into account only social ties (i.e., topological information).
However, the problem of finding the most important nodes
person with respect to the people that are in a specific loca-
tion (i.e. by using the spatial information of the social links)
remains open and largely unexplored.

In this paper, we propose information diffusion metrics
that capture and quantify geographic importance and cen-
trality of users in geo-social networks. We evaluate these
metrics by associating users to one or more locations, us-
ing datasets extracted from Twitter and Foursquare. Our
metrics focus on the structural properties of the geo-social
networks and not on the processes happening over them,
such as information cascading and retweeting. Moreover,
by separating structure and dynamics, they can be used as
quantitative generic tools for evaluating the potential role
of each node in disseminating information in the geographic
space.

The need for modeling spatial social networks and find-
ing measures for quantifying geographic centrality and in-
fluence comes not only from the ambition to study the com-
plex interactions between the social and spatial dimensions
more comprehensively, but also from a variety of potential



practical applications which could benefit from this analysis.
These include:

Targeted information spreading. Being able to mea-
sure geographic centrality allows us to rank users according
to the number of contacts they have in a certain area. Con-
sequently, they can be used to select individuals to be tar-
geted for spreading information. Applications include not
only support for advertisement campaigns of certain prod-
ucts or promotions restricted to given areas, but also the
design of systems for dissemination of emergency alerts in
natural or man-made disaster situations, where information
should be disseminated in a spatially-limited area (for exam-
ple in case of security alerts in parts of a city or for weather
alerts in a certain region).

Models of cultural influence. OSNs are an invaluable
source of data for studies in social sciences that were simply
not possible in the past [10, 12]. In particular, estimating
social and political influence can be very important and rele-
vant for analyzing and interpreting several cultural phenom-
ena. For example, a person tweeting in London might have
influence also outside it, for example in his/her hometowns,
and in case of recent immigrants, in his/her country of ori-
gin. Other possible fields include health studies [7] and eco-
nomics [21]: until now research in these fields has focussed
mainly on the structure of the social networks without con-
sidering geographic aspects.

The main contributions of this paper can be summarized
as follows:

• Starting from some well-known metrics of centrality
and clustering in location-agnostic networks, we de-
fine new measures of centrality for quantifying spatial
influence, spatial closeness, and spatial efficiency for
geo-social networks. We also propose a definition of
spatial local clustering coefficient to quantify the pres-
ence of social triangles in a given location.

• We present a preliminary evaluation of the effective-
ness of these metrics by means of two datasets obtained
from real world OSNs, namely Twitter and Foursquare,
and we discuss the application of these metrics to some
realistic application scenarios.

This paper is organized as follows: in Section 2 we intro-
duce the influence metrics; then, in Section 3, we evaluate
these metrics by means of the two datasets. We discuss
the potential use of these geo-structural metrics for study-
ing dynamic processes in Section 4. Finally, in Section 5 we
conclude the paper by discussing future work.

2. SPATIAL INFORMATION DISSEMINA-
TION METRICS

We can represent a social network as a graph G = (V,E)
with N nodes and K links, where nodes are users and links
are the social connections between them1. We define a spa-
tial social network as a social network where each user i is
assigned a set of ni points on Earth Pi = {p(i)0 , p

(i)
1 , . . . p

(i)
ni }

including locations that are significant for him/her (e.g.,

1This representation can be considered as a snapshot of the
graph at a given time t. A treatment considering the time-
varying nature of the social graphs is outside the scope of
this work.
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Figure 1: Example of social graph (on the right) and spatial
dimension (on the left). In this example the social neighbor-
hood Ni of i is composed by the nodes c, d, and e; the points
of interest of a, b, c and d are inside the spatial neighbor-
hood S, which is the circle of center pT and radius rT . As a
consequence, the socio-spatial neighborhood Ni,S indicated
with full black dots, does not include node e because it falls
outside the spatial neighborhood and also excludes nodes a
and b because their positions are located outside the social
neighborhood.

hometown, workplace, favorite restaurant, etc.)2. We will
firstly introduce a set of accessory definitions that will be
used in the remainder of this paper.

• As far the social graph is concerned, we define the
neighbors (or connections) of node i as the set of nodes
j that are reachable from i through the out-link eij
(content can flow from i to j). The social neighborhood
Ni of a node i is the set of all the ki neighboring nodes
of i (e.g., all the followers of user i in Twitter); ki
is often referred to as the degree of node i. This set
is defined only on social ties and does not take into
consideration any geographic information.

• As far as the spatial dimension is concerned, we use the
notation dG(p1, p2) to indicate the geodesic distance
between two points on Earth p1 and p2. We then de-
fine the spatial neighborhood S as an arbitrarily shaped
part of the geographic surface; this is a continuous set
of geographic points. For simplicity, in this work we
will often consider circular regions specified by their
center and radius but the definitions presented here
can be applied to regions of any shape.

• Given a node j and a geographic region S, the inter-
section Pj ∩ S contains all the significant points of j
falling inside the region. We define the socio-spatial
neighborhood Ni,S of the node i with respect to S as
the set of neighbors j who have at least one significant
point inside S:

Ni,S = {j ∈ Ni : Pj ∩ S 6= ∅}. (1)

With ki,S we denote the number of users in this set.
An example is presented in Figure 1.

2In the simpler case each user can be assigned a single sig-
nificant location. In the evaluation section we will present
two examples covering both cases.



2.1 Spatial Degree Centrality
In general, in a social graph degree centrality is used to

rank users according to the number of ties they have within
the network [17]; its value is a simple indicator of influ-
ence and prestige [22]. Methods based on degree centrality
are generally used to select the best nodes for spreading in-
formation [9]. We extend the concept of degree centrality
to spatial social networks with respect to a given spatial
neighborhood S by introducing the concept of spatial degree
centrality :

Ci,S =
∑
j∈Ni

|Pj ∩ S| . (2)

This value indicates how many significant points the social
neighborhood of user i has got inside the considered spatial
neighborhood S. If every user is associated only one sig-
nificant point, this value indicates the size of the audience
of user i in the region. In the general case of many signif-
icant points for each user, this also takes into account the
strength of the potential audience in the region (i.e. social
connections with many significant places inside the region
give a larger contribution than those with fewer).

The size of the considered region S affects the calcula-
tion of the values of the metrics. For this reason, the size
should be set according to the characteristics of the dataset
(measurement granularity and precision) and the goal of the
analysis itself (for example, researchers might be interested
in an analysis at city level). Since the degree of each node
also affects this value, a normalization of this metric might
also be necessary. The normalization is particularly conve-
nient when comparing users who have a number of followers
that differs by orders of magnitude. This might be the case
that happens when comparing accounts of news agencies and
celebrities, often followed by hundreds of thousands users,
with users who have dozens or hundreds of followers. We call
the normalized version spatial degree ratio, formally defined
as:

ρi,S =
1∑

j∈Ni
ni
Ci,S (3)

where ni is the number of significant places of the user i;
this is equivalent, for the one-place case, to:

ρi,S =
1

ki
Ci,S . (4)

This metric has values in the range [0, 1]. It represents the
ratio of connections of i that are inside the area S, therefore
it allows to compare nodes that have different degrees in the
graph.

These centralities might be considered as simple measures
of spatial influence, which can be used in the selection of a
user for spreading information to a certain geographic re-
gion. However, as they are based on the concepts of geo-
graphic membership and social membership, they might not
be entirely sufficient to describe the geographic distribution
of the neighbors of users. For this reason, in the next sub-
section we will introduce metrics that take also into account
geographic distances.

2.2 Spatial Closeness Centrality
We have defined spatial degree centrality relating to a re-

gion. Now we will define a measure of centrality concerning
a punctual location. Given a target point p? on Earth, we
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Figure 2: Accuracy of geocoding for the Twitter dataset.

define the spatial closeness centrality for a user i towards
this point as its average geographic distance from all the
significant places of his/her connections, formally:

CCi,p? =
1∑

j∈Ni
ni

∑
j∈Ni

dG(pj , p
?). (5)

This definition is an indicator of how the influenced audi-
ence of a user is geographically close to the target point.
It can be considered as the spatial counterpart of closeness
centrality, which for complex networks is defined as the av-
erage distance of the shortest path from the node to all the
other nodes [17] it is used as a heuristic when selecting nodes
in information diffusion processes [9]. However, this metric
might have some drawbacks in specific scenarios given the
fact it is calculated as an average of all the distances. This
metric can be generalized to the case of multiple locations.

2.3 Spatial Efficiency
In order to deal with the problem of very large distances

which might skew the value of spatial closeness centrality,
we define spatial efficiency of user i with respect to a point
p? as follows:

CEi,p? =
1

ki

∑
j∈Ni

1

dG(pj , p?)
. (6)

This measure can be thought of as a spatial version of effi-
ciency of traditional graphs [11]. However, this definition
has also a potential drawback: if the the neighbor loca-
tion pj coincides with p? this formula is not defined. For
this reason, we modify the above formula by introducing a
smoothing decay term as follows:

CEi (p) =
1

ki

∑
j∈Ni

e−dG(pj ,p
?)/γ) (7)

where γ is a scaling factor that can be used to give differ-
ent weights to the distance dG(pj , p

?). In this formula, the
contribution for every neighbor j is at most 1. It is equal
to 1 if the neighbor location pj coincides with p?, whereas it
is negligible if the point is very distant (asymptotically zero
if the distance is infinite). This definition can be general-
ized to multiple locations in a similar way to the formulae
presented above.
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(a) Spatial degree centrality from London.
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(b) Spatial degree centrality from San Francisco.

Figure 3: Spatial degree centrality of Twitter users in London and San Francisco.
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(a) Spatial degree ratio from London.
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(b) Spatial degree ratio from San Francisco.

Figure 4: Spatial degree ratio of Twitter users in London and San Francisco.

2.4 Local Spatial Clustering Coefficient
All the definitions presented up to here concern links be-

tween pairs of nodes. An interesting measure often used in
social network analysis, which deals with triplets of people,
is the local clustering coefficient, also called transitivity [22].
It is a local measure quantifying the fraction of triangles
among a node and its neighbors. Its spatial version, the
geographic clustering coefficient, weights every triangle de-
pending on the geographic distances between the nodes of
the triangle [19]. However, this geographic version does not
give insights on how neighbors of neighbors might interact
in a specific geographic region. For this reason, we define
the local spatial clustering coefficient as the number of tri-
angles present in the socio-spatial neighborhood taken into
analysis, formally:

Ci,S =
|{ejk ∈ E : j, k ∈ Ni,S}|

ki,S(ki,S − 1)
(8)

where the numerator counts how many links in the social
graph are present between users in the socio-spatial neigh-
borhood and the denominator counts how many there could
be at most, if they were all connected between each other.
The local clustering coefficient measures to which extent
neighbors of a node are connected to each other. This met-
ric acquires a special meaning in its spatial version. Nodes
scoring high values are part of “social circles”, making them
potentially highly influential3. Social circles defined in this

3At the same time, it is worth noting that, according to some
existing theories such as Burt’s structural holes [5], nodes
scoring low values might also be considered very influential
but in a different way as they are able to bring information
to users who are not connected between each other, therefore
controlling information flows for these users.

way can be considered a simple example of spatial network
motifs, i.e., patterns of interactions on which the network is
built [15]. The investigation of the role of spatial network
motifs in information dissemination is outside the scope of
this work.

3. EVALUATION
In this section we provide a preliminary evaluation of the

proposed metrics. We first present the datasets and we ana-
lyze the results deriving from the application of the metrics
to different case studies.

3.1 Description of the Datasets
In order to evaluate our metrics, we analyze two pop-

ular real-world OSNs, Twitter and Foursquare. In gen-
eral, datasets were acquired using 2-hop snowball sampling,
seeded with random users chosen in well-defined geographic
areas. Due to different properties of the two social network-
ing services taken into consideration, the two datasets were
obtained following different methodologies, as explained be-
low.

With respect to Twitter, we crawled a dataset containing
information about 657,777 users, starting from two evenly
distributed sets of 1375 seed users. These were chosen ran-
domly among users that were tweeting from two urban areas,
London, UK and San Francisco, California4. This location
bias was necessary given the nature of our investigation,
which requires to have a statistically significant sample of
users in the area. It is also worth noting that this can be

4The locations for the “seeds” were retrieved from geotags,
i.e., spatial tags which are associated to tweets either by
automatic geographic sensors as GPS or manually by the
user.
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(a) Spatial degree centrality from London.

0 20 40 60 80 100
Spatial Degree Centrality

0.0

0.1

0.2

0.3

0.4

0.5

C
C

D
F

China
Kansas City
London
NYC
San Francisco
South Korea

(b) Spatial degree centrality from San Francisco.

Figure 5: Spatial degree centrality of Foursquare users in London and San Francisco.
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Figure 6: Spatial degree ratio of Foursquare users in London and San Francisco.

considered as a practical way of retrieving these users for a
potential deployment of the algorithms for the calculation
of the proposed metrics. We assigned a single significant
place to each user, by fetching the information in the “lo-
cation” field of their personal profile, and converting it to
geographic coordinates through the Google Geocoding API.
The geocoder was able to identify location for 378,829 users,
with different levels of precision; the majority of the identi-
fied locations were at town level, according to the distribu-
tion shown in Fig. 2, similar to that shown in [8]. We are
indeed aware of the fact that locations are not precise and
the data are noisy5.

In Foursquare, a location-based online social network, users
“check-in” at venues to let their friends know about their
whereabouts, to keep track of their habits and to explore
places related to the interests they have in common with
other people. The user with the highest number of check-
ins over the last 60 days is called the “mayor” of the venue
in Foursquare jargon. For this reason, mayorship provides
information of potentially strong spatial significance of a cer-
tain place for that user. This is also a fine-grained informa-
tion, as venues are commonly specified at premises level.
For this reason, we used the collection of mayorships loca-
tions to build the set of significant places. We crawled a
dataset of 177,809 users. Since the number of connections
in Foursquare is typically smaller than the number of fol-
lowers in Twitter and the former tend to link with spatially
close people [19], our sampling strategy followed a different
approach in order to avoid geographically sparse data. We
selected a group of interesting urban areas and we crawled
venues in the area using the Foursquare API. It is worth

5The problem of dealing with noisy data is part of ongoing
work.

noting that these considerations are of great importance for
a practical implementation of systems for calculating these
metrics in (quasi) real-time, also considering the crawling
limitations of the APIs6.

Finally, we make the simplifying assumption that the rate
of change of the network topology is negligible with respect
to the information dissemination process taking place over
it. This assumption seems reasonable in networks such as
Twitter or Foursquare where the rate of change of links is
usually very low at the scale of 1 day for example. In fact,
the number of new added and removed followers and friends
is quite low for a given user after an initial period where a
large number of users is added.

3.2 Results
In this section we will present a selection of measurements

for each metric. More specifically, in this preliminary study,
we choose to compare areas that are heterogeneous from a
cultural point of view and different in size.

We also consider two practical case studies. The first is
related to the London riots that took place in August 2011:
we measure the centrality of Londoners on Croydon, which
was one of the theaters of the most violent acts in the British
capital. This scenario is an example of usage of this tech-
nique in case of emergency. In other words, we are able to
answer the following question: what is the best set of people
to target in order to have localized influence through social
media in case of natural and man-made emergency and dis-
asters?

6The Foursquare API returns at most 50 venues per call
and does not allow to paginate over all venues in a given
large area. Therefore, we queried for venues in categories
in small-radius areas (i.e., with a 50 m radius) randomly
selected inside the larger areas considered.
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Figure 7: Spatial degree centrality of Foursquare users in
Croydon and London towards Croydon.

The second consists in quantifying the centrality of both
San Franciscans on people living in Chinatown, and people
living in Chinatown on people living in China. It can be
seen as an application to the area of geo-demographics [1],
aimed at quantifying the potential cultural influence of the
inhabitants of certain areas of the city over other areas.
Spatial Degree Centrality and Ratio In Figure 3 we
report the Complementary Cumulative Distribution Func-
tion (CCDF) of spatial degree centrality of the users located
in London and in San Francisco towards four cities (New
York, Kansas City, London and Seattle) and two countries
(China and South Korea) using the Twitter dataset. We
selected the countries by considering the presence of a non-
negligible percentage of their population belonging to these
ethnic groups. It is possible to observe that both cities have
a high degree centrality with respect to themselves, as ex-
pected. It is surprising, though, that the degree centrality
of Londoners on themselves is very high; in comparison, San
Franciscans are not significantly central with respect to their
fellow-citizens, and have a self-centrality similar to the cen-
trality shown towards New Yorkers. In our opinion, a possi-
ble cause might be that many people who spend most of the
day in San Francisco (for example, because their workplace
is based there), actually live in the neighboring areas and
commute everyday. While 9 users out of 10 in London have
at least 1 followers from their own city, only 1 user out of 2
in San Francisco has at least a fellow-citizen reading his con-
tent. San Franciscans have some limited potential influence
on Londoners, though not as much as on New Yorkers. Users
from London and Seattle are also potentially influenced in a
substantial way, though not as much as New Yorkers. The
countries, China and South Korea, score very low centrality
measures in both scenarios, and their curves overlap with
those related to Kansas City, the city on which both Lon-
doners and San Franciscans influence the least.

It is worth noting that these results could be influenced by
a culture-related tendency to include location information:
users from some locations might be keener to include the real
personal location, compared to users from other places, due
to a different sensibility about privacy issues. Unfortunately,
we do not have hard evidence about this fact.

Similar observations can be made for the CCDF for Spa-
tial Degree Ratio in Figure 4. We can notice how the high
degree centrality of London with respect to itself is actually
connected to a low spatial heterogeneity of followers: nearly
one Londoners out of two has at least 20 followers living in
the same city, while in San Francisco only one out of ten
satisfies this property. This peculiar characteristic might

be explained both with the tendency of Londoners to fol-
low people from London and with a low interest shown by
non-Londoners for the content shared by Londoners. We can
also observe how the two highest curves of ratio show a more
linear progress, compared to their spatial degree centrality
counterparts.

We also perform a similar analysis using the Foursquare
dataset. The lower penetration of Foursquare leads to a
lower average degree (i.e., on average users in Foursquare
have a smaller number of connections than in Twitter) and
consequently to smaller centrality values, which include many
zeros. However, results shown in Fig. 5 and Fig. 6 are still
in accordance with those observed for Twitter. Considering
the characteristics of the users in the city, London is again
a place of high centrality with respect to itself.

While this city-level analysis can be carried out on the
Twitter dataset, we cannot use it for a meaningful analysis
at a finer scale, given the nature and quality of the data.
Therefore, we use instead the Foursquare dataset, in partic-
ular to study the potential influence of Chinatown towards
San Francisco and China. The metric is able to identify
8% of users that have a non-null centrality on China and
to rank them according to their centrality (which quanti-
fies their potential influence over China). When analyzing
the average values of the measure, it is interesting to note
that the centrality of San Francisco towards Chinatown and
the centrality of Chinatown towards itself are comparable
(3.2 vs 3.06). This might support the hypothesis that the
district is considerably influenced by people living in other
parts of the city and that choosing to deliver information
to people in Chinatown instead of San Francisco might not
have a significant impact on how the information is spread
in Chinatown itself. Moreover, given its history and ethnic
composition it is not surprising to discover that the average
centrality of Chinatown towards China is almost 3 times big-
ger than the average centrality of the city of San Francisco
on China (32.24 vs 11.87).

For the Croydon scenario, in Figure 7 we report the cen-
trality of Croydon and London on the Croydon area itself.
Users in Croydon appear to have substantially higher val-
ues of degree centrality than users of London. This suggests
that when disseminating information, targeting people in
the area of Croydon, instead of the whole London, might
give an advantage in reaching the area of Croydon itself.
Spatial Closeness Centrality In Figure 8 we represent
the probability distribution function for the seven distri-
butions of spatial closeness centrality. For each curve, a
dashed vertical line represents the median. We can firstly
notice that for both cities taken into consideration, London
and San Francisco, the closeness centrality curves are more
spread out compared to the other curves, which are gener-
ally narrower and characterized by a series of peaks. London
shows this behavior with stronger emphasis; this can be an-
other evidence of the the high locality of London followers.
By definition, geographic constraints have a strong impact
on this metric; therefore, we would expect that the peak and
the median are very close to the physical distance between
the considered points. Indeed, this is the case for all the
pairs we report in the figure.
Spatial Efficiency In order to characterize spatial effi-
ciency, we set the value of γ equal to the maximum radius
of the geographic area taken into consideration. Figure 9
shows the CCDF for the Twitter users in London and San
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(a) Spatial closeness centrality from London.
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Figure 8: Spatial closeness centrality of Twitter users in London and San Francisco.
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(a) Spatial efficiency centrality from London.
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Figure 9: Spatial efficiency centrality of Twitter users in London and San Francisco.

Francisco with respect to the areas considered for the other
metrics. As this measure emphasizes the role of neighbors
which are close to the location taken into consideration, we
can see how the efficiency of London with respect to itself
stands out from all the other curves.
Local Spatial Clustering Coefficient The local spatial
clustering coefficient allows to identify how many “social tri-
angles” are present in a specified area. As an example, we
compute this metric for neighbors of Twitter users which
indicated their location in the London area. The percentage
of null values is quite high (88%) indicating that a small
number of Londoners have social circles in their own city.
In Figure 10 we show the CDF for the non-null values.

4. DISCUSSION
When defining metrics to determine how users are influen-

tial in a social network, or equivalently how central they are
in the process of information diffusion, it seems natural to
consider quantities related to the level of actual engagement
of users (e.g., how many elements they share, how many re-
actions/retweets they receive in turn from their friends and
so on) and about the semantics of the shared content (e.g.,
whether it is multimedia content, news links, games, etc.).
Such measures can give information about the role of the
user in the network and also about his/her topics of inter-
ests. For each topic he could either be a pure provider of
content or a pure consumer of content or, as it happens more
commonly, a combination of the two. The goal of this work
is to explore spatio-social centralities relying only on struc-
tural properties of social networks, without considering data
derived from processes taking place in the network, such as
information diffusion [13].

This might be considered a limitation of the current met-
rics. However, our goal is to propose a generic set of metrics
that can be used as the basis for an analysis of the dynamic
processes happening over them [3].

Popular OSNs are used by millions of users and handle
massive amounts of data. Given the fact that the proposed
metrics are calculated on very large datasets, computational
complexity is a key issue. First of all, we observe that the
metrics we have defined are local : in order to perform the
calculation we do not need global information about the en-
tire graph. Given a specific location, described by a ge-
ographic point or surface, in order to determine the mea-
sures defined above for a set of n users, we need to know
the coordinates of the neighbors’ significant places. Spatial
degree centrality, spatial closeness centrality and efficiency
measures scale as O(nkt) where k is the expected number
of neighbors of each node and t is the expected number of
significant points for each neighbor. In order to determine
local spatial clustering coefficient we also need to retrieve
the neighbors of neighbors of the starting node (so that we
can determine if two of his/her neighbors are neighbors in
turn); the complexity of the calculation of this metric scales
as O(nk2t2).

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented metrics for quantifying po-

tential information dissemination in social networks where
geographic information is associated to each user. We have
evaluated these metrics by means of two datasets extracted
from Twitter and Foursquare by analyzing different realistic
case studies, which might be relevant for emergency com-
munications and social sciences. The applications of these
metrics are many, including targeted location-aware mar-
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Figure 10: Spatial clustering coefficient of Twitter users in
London towards London itself.

keting and efficient information spreading during emergency
events.

We plan to extend this analysis by taking into consid-
eration explicit actions (such as retweets or mentions, in
Twitter [13, 6]). We also plan to explore the aspects related
to the implementation of these algorithms to extract these
indicators in real-time.
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[3] A. Barrat, M. Barthélemy, and A. Vespignani.
Dynamical Processes on Complex Networks.
Cambridge University Press, 2008.
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